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Transient Evolution Towards a Unique Stable State: 
Stochastic Analysis of Explosive Behavior in a 
Chemical System 
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A stochastic description of an isothermal chemical system showing explosive 
behavior is developed. Numerical analysis shows the appearance of multiple 
humps of the probability distribution. This implies the onset of chaotic behavior 
reflecting the random character of the ignition process. Various characteristics 
of the phenomenon, such as onset time and duration, are studied in terms of the 
size of the system, the intrinsic parameters, and initial conditions. The implica- 
tions of the results in combustion are discussed. 
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1. I N T R O D U C T I O N  

The need for a stochastic analysis in problems involving bifurcat ions of 
new branches  of stable states, (1) or an  evolut ion from an  initial uns table  (2'3) 

or marginal ly  stable (a) state is well recognized. In  the absence of such 
condi t ions  it is thus tacitly assumed that the system will essentially follow a 

determinist ic  course described by the phenomenologica l  equat ions of evolu- 

t ion in which f luctuat ions will consti tute only a minor  per turbat ion,  jus t  
like in the vicinity of an  equi l ibr ium state in the absence of phase transi- 
tions. In  a recent paper  one of us (G.N.) and  coauthors (5) showed that 
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there exists an important class of systems, those undergoing an adiabatic 
thermal explosion, that may escape from this rule. It is the purpose of the 
present work to extend the analysis to isothermal, chemical explosions, and 
also to point out some additional interesting features not considered explic- 
itly in Ref. 5. 

In Section 2 we summarize the phenomenological analysis of a nonlin- 
ear chemical system (6) which, depending on the parameters, can exhibit 
various types of behavior. One of these behaviors, the chemical explosion, 
is taken up in Section 3. It is shown that during the transient evolution to 
the unique stable steady state the probability distribution of the system can 
develop multiple humps and long tails, reflecting the onset of random 
behavior. Section 4 is devoted to the dependence of this behavior on the 
size of the system, the initial conditions, and the intrinsic parameters. 
Comments and suggestions are summarized in Section 5. 

2. CHEMICAL EXPLOSION IN A SIMPLE MODEL 

In what follows we consider a chemical system involving one variable 
intermediate and a cubic rate law. A typical example is provided by 
Schl6gl's model (6) 

A + 2 X ~ 3 X  
X ~ - B  (2.1) 

It will be convenient to write the rate equation in a canonical form which, 
on suitably redefining variables, parameters, and time scales reads (v) 

d~ _ ~3 + 3X.2 _ (3 + 3)~ + 1 + 3' (2.2) 
dt 

where the bar over x is a reminder that one is dealing with a purely 
phenomenological description ignoring fluctuations. For 3 = 3' ---- 0 one has 
a bifurcation point, corresponding to the triple root 2 = 1 of Eq. (2.2) at the 
steady state. For 3, 3 ' ~  0 the usual analysis leads to Fig. 1, in which the 
regime of three real solutions is contained between lines (a 0 and (a2) of 
parameter space. On the lines (a 0 and (a2) themselves the system exhibits 
one marginally stable state (arising from a limit point bifurcation) and one 
asymptotically stable state. 

The point we want to make now is that even outside the bistable 
domain of Fig. 1 the situation is far from being uniformly simple. Undoubt-  
edly, far away from (a 0 or (aa) nothing special is to be expected: the 
system will follow its deterministic course and eventually it will evolve to 
the unique stable attractor. Close to these two curves, however, the situa- 
tion is different: indeed, in these regions the system will be dominated 
during some time interval by a slow mode--the remnant of the limit point 
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Fig. 1. Bifurcation diagram for the Schlrgl model in (8, 8') space. Lines (al) and (a2) delimit 
the region of bistability; lines (bl) and (b2) delimit the regions of prominent explosive 
behavior. 

bifurcation. As a result it will exhibit a long induction period followed by a 
quick evolution to the unique stable attractor. We call this the chemical  

explosion regime. It is this regime that constitutes the main point of focus of 
the present paper. 

One convenient way to delimit the range of explosive behavior, at least 
at the level of the phenomenological description of this section, is through 
the properties of the deterministic potential from which Eq. (2.2) derives: 

~.4 - -  .~3 ~ ) .~2 
7- +(3+ T - ( 1  + (2.3) 

The existence of an induction period for ~ implies necessarily that there 
must be a time, tc, at which the graph of the solution ~(t) to Eq. (2.2) has 
an inflection point. Differentiating Eq. (2.2) once again we obtain 

d2~ ~2U d~ 
dt 2 - O~ 2 dt (2.4) 

from which it follows that for t C to exist the deterministic potential must 
have an inflection point for values of ~ between the initial state x0 and the 
final stable state. We may further characterize explosion by introducing the 
criterion that the slope of the potential at the inflection point ~i be smaller 
than some value 0 

I U'(~i)] < 0 (2.5) 
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The two above conditions determine the curves (bl) and (b2) in (8, 6') space 
(cf. Fig. 1) 

6' = 2 ( - 6 / 3 )  3 / z -  3 ( - 6 / 3 )  + 0 

6' = - 2 ( -  6/3)  3/2 - 3 ( -  8/3)  - 0 (2.6) 

6 < 0  

delimiting the region of explosive behavior. 
The violence of explosion will depend on the value of the slope of the 

potential at the inflection point. If the limit of marginal stability is ap- 
proached, this value will go to zero and the induction period will tend to 
infinity. The explosion will then become more and more pronounced. This 
procedure may seem arbitrary at the level of the deterministic approach of 
the present section. It will, however, be given a sound motivation in the 
framework of the stochastic approach adopted in the subsequent sections. 
Moreover, in the region of violent explosion the stochastic approach will 
result in qualitative changes in the evolution which cannot be accounted for 
by the properties of the deterministic potential. 

3. STOCHASTIC ANALYSIS OF THE EXPLOSIVE REGIME 

The existence of various time scales in the explosive range implies that 
during some time interval fluctuations may compete with the deterministic 
evolution. This constitutes a strong motivation for undertaking a stochastic 
analysis of the evolution. To do this we regard, as usually, ~1) chemical 
reactions as a birth and death process and write the master equation for the 
probability distribution P(X,  t). For Schl6gl model, Eq. (2.1), we obtain 

ae(x, t) 
dt = X ( X - 1 ) e ( X -  l , t)  + t~(X + l ) P ( X  + l , t)  

- [ ~ , ( X )  + t~(x)]e(x,t) (3 .1)  

where 

X(X) = 3 X ( X -  I ) / V +  V(1 + 8') 

I~(X) = X ( X -  1) (X-  2 ) / V  2 + X(3 + 6) 

and V denotes the size of the system. So far the time-dependent properties 
of the solution of this equation for general values of 6 and 8' are poorly 
known. (See Ref. 2 for a survey.) In Ref. 5 it has been shown that for a 
pure death process (describing an adiabatic thermal explosion) detailed 
information could be obtained by representing the death rate by a piece- 
wise linear function. It may be expected that a similar idealization could 
allow us to handle Eq. (3.1) as well. We do not attempt this however, but, 
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rather, resort to the numerical integration of Eq. (3.1) and to Monte Carlo 
simulations of the underlying stochastic process. 

Figure 2a gives a typical result for parameter values between curves (a) 
and (b) of Fig. 1. We start with exactly X --- X o particles. As time goes by 
the probability function develops a width and the peak slowly travels 
towards the unique stable attractor. Well before the attractor is reached, 
however, the probability distribution flattens and develops a second peak 
situated on the other side of the inflection point of the potential. The two 
peaks coexist for a while but eventually the one centered near the initial 
state disappears as the system relaxes to its final, one-hump steady state 
distribution centered on the stable steady state. 

A useful visualization of the evolution of P(X, t) is provided in Fig. 2b, 
in which the surface P(X, t) is plotted in the (X, t) space. A section by a line 
parallel to the X axis gives the probability profile for given t, while a section 
by a line parallel to the t axis gives the evolution of P for a given X. From 
this picture one can easily determine the way the most probable values of 
P(X, t) evolve in time. The existence of a two-hump distribution will then 
be reflected by a curve exhibiting limit points and hysteresis. However, 
contrary to ordinary situations in which hysteretic behavior appears when a 

T=0.25 T :z+.O 

A 
T=7.25 

T=9.9 P 
eq, 

Fig. 2. (a) Time evolution of the probability distribution: V =  1000, X 0 = 1500, ~ = -0 .38 ,  
~'  = - 0 . 5 .  
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P(X,t) 

Fig. 2. (b) The surface P(X, t) in the (X, t) space. Parameter values as in Fig. 2(a). 

parameter is varied, in the present case both the new branches of most 
probable values and the hysteresis region will be observed as time follows 
its course. We have here an additional example of the phenomenon of 
"bifurcations unfolding in time" studied in Ref. 5 in the context of 
adiabatic thermal explosion. 

An appealing way to visualize the evolution of the system under 
different conditions is suggested in Fig. 3, in which the variable Xm, 
corresponding to the extremum of P(X,  t) is plotted in terms of one of the 
parameters (say 8) and time. We see that the explosion regime, sandwiched 
between bistability and deterministic behavior, shows clearly a "flat" part 
corresponding to the induction period, followed by a faster evolution 
ignited near the inflection point. If 8 approaches the marginal stability 
point, a fold with the limit point appears; the time coordinate of the limit 
point eventually tends to infinity, and beyond the value of 8 = 8marg we 
have bistable behavior. 

During the time interval of coexistence of two humps of comparable 
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Fig. 3. Time dependence of the extrema of the probability distribution as a function of the 
parameter: visualization of various regimes. From the fight-hand side: region of monotonous 
relaxation (A), region with limit points corresponding to the violent explosion (B), and true 
bistability corresponding to bimodal stationary probability distribution (C). 

amplitude the system will exhibit a markedly chaotic behavior, which will 
be reflected by an enhanced value of the various moments of the probabil- 
ity distribution. In more physical terms, what is happening is that the 
"ignition t ime"-- the  time at which the system reaches the inflection point 
of the potential--is no longer fixed but becomes, instead, a random 
process. As the system evolves according to widely separated time scales on 
the two sides of the inflection point, small differences in the time of 
reaching this point will be amplified considerably. The probability mass 
will therefore split into two parts, one of which will be enriched at the 
expense of the other through a rapid flow across a potential barrier. (8) The 
important difference with respect to the usual Kramers type of problems is 
that in the present case we do not have an analog of "activation energy," 
since there is only one stable steady state available to the system. 

4. INFLUENCE OF SIZE, PARAMETERS, AND INITIAL CONDITIONS 

4.1. Dependence on Size 

We carried out a series of Monte Carlo simulations for sizes varying 
from V = 1000 to V = 40000. Figure 4 summarizes the results on the graph 
of the most probable values plotted against time. We see that as V increases 
the extent of the hysteresis loop diminishes and the time course of the most 
probable value tends to the curve corresponding to the deterministic 
evolution. 
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Fig. 4. Maxima of the probability distribution as a function of time for different sizes of the 
system. Squares denote V = 2000, triangles V = 5000, circles V = 10000, crosses V = 40000. 
Solid line corresponds to the deterministic trajectory. X 0 = 1.5 V, 6 = -0.38, 8' = -0.5. 

In order to sort out the rules governing the onset of new branches of 
most probable values and the extent of the hysteresis loop we also repre- 
sent, in Figs. 5 and 6, the time variation of the reduced second and third 
order variances V2 = ((~X)2)I/2/(X)and V3 = ((~S)3)l/3/(S), respec- 

tively. The first of these quantities provides an adequate measure of the 
importance of fluctuations relative to the deterministic evolution, whereas 
the second one measures the skewness of the probability distribution. We 
notice in Fig. 5 an enhancement of fluctuations which, even for large 
systems, may attain values comparable to the mean. On the other hand the 
skewness exhibits a transition from negative to positive values which 
becomes very sharp as v increases. This reflects the gradual shift of the 
probability mass from the right to the left of the instantaneous mean value, 
accompanying the appearance and subsequent dominance of a second peak 
in the region of low values of X. 

Using this information we may now characterize better stochastic 
behavior during explosion. Let us define the onset time to be the time of 
appearance of the second peak of the probability distribution. The end of 
stochastic behavior may then be tentatively defined as the time at which 
the variance or skewness fall to half of their maximum value. Denoting the 
resulting interval by At we verify that 

At = r -'~ (4.1) 
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Fig. 5. Reduced second variance as a function of time and size of the system. X o = 1.5 V, 
6 = -0.38, 6' = -0.5. 

Fig. 6. 

V3 

0.5 

10 

~ 0 

/ /  \ : o o o  " 
/ , /  ", ,  

000 

t \̀ . 0 G ~  
' \̀ .̀ .,4 ,.,.41000 

I 

1 
2O 

Reduced third variance as a function of time for different sizes of the system. 
X o = 1.5V, ~ = -0.38, ~' = -0.5. 

where a - - 0 . 4 8 ,  cp ----- 4 0 / 0  or a - - 0 . 4 9 5 ,  ~ 0 ~ 4 5 / 0  for the second- and  
third-order variance,  respectively. Let us recall that  8 gives the order of 

magn i tude  of the derivative of the determinist ic  potential  U at the inflec- 
t ion point  [cf. (2.5)]. 

F r o m  the above it is tempting to infer an  asymptot ic  law of the form 

At = A IU'(xi) I - 1 V - , / 2  (4.2) 
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in which A is a numerical factor and U'(xi) reflects the violence of the 
explosion. In our case, for values of 8 ranging from -0 .34  to -0 .38,  
A I U,(xi) ]- 1 yields values between 400 and 1300. Both the presence of such 
a larger factor multiplying the volume dependence of At and of the 
exponent - 1 / 2  in the volume dependence itself are in agreement with the 
analytical results developed in Ref. 5. As regards the onset time, it appears 
that it becomes longer as V increases. This is natural, since for large V 
diffusion is smaller and thus the probability mass needs a longer time to 
cross the inflection point of the potential. 

An alternative criterion, leading to a similar result, is to compute the 
probability mass concentrated in some interval (of order V ~/2) around the 
final steady state as a function of V and to see how this varies during 
explosive behavior. 

In summary it appears that although stochastic behavior is bound to 
disappear in infinite systems, its decay law is a weak one. It is therefore 
expected that a local description, in which one is interested in the behavior 
of fluctuations in small volumes, will be considerably influenced by sto- 
chastic effects. 

4.2. Dependence on Intrinsic Parameters 

It has been mentioned in Section 3 that within the region in (/~, ~i) 
space, in which we may expect explosive behavior [i.e., the region beyond 
curves (ax) and (a2) ] there exist two subregions: one characterized by the 
appearance of transient bimodality and another in which P(X, t) remains 
unimodal during the process of relaxation towards the steady state. The 
position of the boundary between these subregions (curve bl-b 2 in Fig. 1) 
depends on the size of the system: when the size increases, the extension of 
the chaotic region tends to zero (we discussed this fact in Section 4.1) and 
curves (b) tend to (a). 

In order to show the influence of parameters on the dynamics of 
relaxation for a system with finite size we performed a series of Monte 
Carlo simulations for V = 1000, 8 ' =  -0 .5 ,  and the following values of 6: 
- 0.28, - 0.34, - 0.35, - 0.38. For 8' = - 0.5 the marginal point predicted 
by deterministic analysis is at 8 = -0 .4 ,  so all the values of ~ given above 
correspond to a unimodal stationary distribution. The transient evolution 
resulting from stochastic analysis is summarized in Figs. 7-9. Figure 7 
shows how the change in ~ gives rise to a fold catastrophe and influences 
the extension of the hysteretic region during the evolution of the most 
probable value of P(X, t). Figures 8 and 9 show the gradual increase of the 
amplitude and range in time of the second variance and skewness. 
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Extrema of the probability distribution as a function of time for different values of 
parameter 8. V =  1000, X o = 1500, 6 ' =  -0 .5 .  
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Reduced  second variance as a function of time and parameter 8. V = 1000, X o 
= 1500, 8' = -0 .5 .  
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Fig. 9. 
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Reduced third variance as a function of time and parameter & V = 1000, X o = 1500, 
6' = -0.5. 

4.3. D e p e n d e n c e  on Initial Condi t ions 

As remarked in Section 2, a necessary condition for the chemical 
explosion to appear  is the existence of an inflection point of the determinis- 
tic potential between the initial state and the final steady state. For the 
initial conditions close to the final steady state the stochastic model 
undergoes rapid relaxation following essentially the deterministic path. On 
the other hand, for various initial conditions sufficiently prior to the 
inflection point the pattern of evolution may change radically: because of 
the smallness of the deterministic rate, fluctuations can build up and 
compete with the deterministic evolution. Specifically, after rapid relaxation 
to the "flat" region of potential the probability distribution develops a 
second hump. Moreover the evolution in this region independently of the 
initial state appears to be "universal." 

We performed a series of simulations for the following parameter  
values: 6 - -  -0 .38 ,  6 ' =  -0 .50 ,  V- -  1000, X 0 = 1100, 1200, 1500, 1700. For 
these values the deterministic potential has the shape presented in Fig. 10 
with inflection points located at xil = 0.664 and Xs2 = 1.356 (x = X / V ) .  If 
the initial conditions are located beyond x2~, the system shows a bifurcation 
in time. For the initial conditions closer to Xstation,X 0 < X2i , the system 
relaxes to the steady state without showing the above phenomenon. This is 
well visualized in Fig. 11, where the graphs of the skewness for various 
initial conditions are superposed, taking the positions of their maxima as 
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the reference points in the time scale. The curves corresponding to X 0 
= 1500 and X 0 = 1700 (i.e., x 0 = 1.5 and x 0 = 1.7) eventually coalesce: this 
means that after rapid relaxation to the "flat" region of potential the 
probability distribution is stabilized for some period of time (cf. minima of 
V3) and then "chemical explosion" with "transient bimodality" occurs. As 
for the initial conditions X o = 1100 and X 0 = 1200 we observe the usual 
relaxation to the Ssta t io  n accompanied by the enhancement of fluctuations 
around the deterministic path. 

5. D I S C U S S I O N  

We have seen that the evolution of the probability distribution of a 
chemical system showing explosive behavior can be decomposed into three 
stages: an initial one, characterized by a Gaussian-like distribution whose 
maximum travels with a speed close to the one predicted by the determinis- 
tic equations; the explosion proper, characterized by a flattening of the 
distribution, a rapid change in the skewness, and eventually the appearance 
of a second hump for some period of time; and finally, a regime of 
relaxation towards the unique stable attractor, characterized by the gradual 
disappearance of the peak generated by the initial condition. 

Our results suggest that the above dynamics cannot be viewed as an 
evolution in a constant potential. Rather, it is more appropriate to think in 
terms of an evolution in a stochastic potential whose qualitative aspect 
depends on time: at the beginning it is similar to the deterministic potential, 
but subsequently it deforms (the deformation depending on the volume and 
initial conditions) and develops a second minimum corresponding to the 
"flat" region of its deterministic counterpart. This minimum is responsible 
for the transient "stabilization" of the maximum of P(X,t) before the 
inflection point. As the tunneling towards the other minimum on the stable 
attractor goes on, the first minimum disappears and the asymptotic form of 
the stochastic potential, determining the stationary properties of P(X), 
reduces again to the deterministic one. 

Needless to say, real world chemical explosions are multistep phenom- 
ena involving the competition between various pathways, many of which 
contain autocatalytic or inhibitory effects associated with the appearance of 
free radicals and chain reactions. (9) We expect that in such a complex 
dynamics the role of fluctuations will be even more important than in the 
simple model studied in the present paper. More generally, it seems to us 
that chain reactions and explosive behavior should be characteristic exam- 
ples of a fluctuation chemistry, (1) in which probabilistic elements are built 
into the system and confer on the process of ignition an essentially 
statistical character. 
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